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IMPLEMENTATION OF CHEBYSHEV-HALLEY TYPE METHODS 

BASED ON HYPER-DUAL NUMBERS 

V. I. Olifer  

 

 

Finding the zeros of non-linear functions quickly and accurately is an interesting, complex, and 

practically important problem in the field of computational mathematics. This problem is reduced 

to solving the equation 𝑓(𝑥) = 0, where 𝑓(𝑥) is a scalar non-linear function defined on a certain 

interval of real numbers. One of the most famous and basic tools for solving such equations is 

Newton's method, given by the formula: 

 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
, 𝑖 = 0, 1, 2, … (1) 

 

It converges quadratically for simple roots and linearly for multiple roots. In the development of 

this method, cubically convergent one-point methods were proposed. One of such well-known 

schemes is the classical cubically convergent Chebyshev-Halley family, which improves the 

Newton method and is given by the following relation [1]: 

 

𝑥𝑖+1 = 𝑥𝑖 − [1 +  
1

2


𝐿(𝑥𝑖)

1 − 𝛼𝐿(𝑥𝑖)
] 𝐷(𝑥𝑖), 𝛼 ∈ 𝑅 (2) 

 

where: 𝐿(𝑥𝑖) =
𝑓(𝑥𝑖)𝑓′′(𝑥𝑖)

𝑓′(𝑥𝑖)2
= 𝐷(𝑥𝑖)𝑓′′(𝑥𝑖)/𝑓′(𝑥𝑖) and 𝐷(𝑥𝑖) = 𝑓(𝑥𝑖)/𝑓′(𝑥𝑖) is the 

Newtonian correction. 

Different values of 𝛼 in (2) give different (known and unknown) iterative formulas. 

For 𝛼 = 0 we have the formula of the Chebyshev method: 

 

𝑥𝑖+1 = 𝑥𝑖 − [1 + 
1

2
𝐿(𝑥𝑖)] 𝐷(𝑥𝑖), (3) 

 

and for = 1/2 we get the formula of the Halley method: 

 

𝑥𝑖+1 = 𝑥𝑖 − [1 +  
𝐿(𝑥𝑖)

2 − 𝐿(𝑥𝑖)
] 𝐷(𝑥𝑖), (4) 

 

and, finally, for 𝛼 = 1 we have the super-method Halley formula: 

 

𝑥𝑖+1 = 𝑥𝑖 − [1 +  
1

2


𝐿(𝑥𝑖)

1 − 𝐿(𝑥𝑖)
] 𝐷(𝑥𝑖) (5) 
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This family of iterative methods, as was said, has cubic convergence and is associated with the 

need to calculate 𝑓(𝑥𝑖), 𝑓′(𝑥𝑖)  and 𝑓′′(𝑥𝑖). In some cases, the calculation of 𝑓′(𝑥𝑖) and especially 

𝑓′′(𝑥𝑖) is very resource-intensive, and sometimes impossible. Therefore, the direct use of formula 

(2) is of very limited. To eliminate the second order derivative from 𝐿(𝑥𝑖), approaches based on 

the approximation of 𝑓′′(𝑥𝑖) through 𝑓(𝑥𝑖) and 𝑓′(𝑥𝑖) can be used, i.e. 𝑓′′(𝑥𝑖) ≈ 𝜑(𝑓(𝑥𝑖), 𝑓′(𝑥𝑖))  

(see, for example, [1 – 4]). In turn, the calculation of 𝑓′(𝑥𝑖) can also be labor-intensive. And if the 

first derivative 𝑓′(𝑥𝑖) is also approximated i.e. 𝑓′(𝑥𝑖) ≈ 𝜓(𝑓(𝑥𝑖)), then 𝑓′′(𝑥𝑖) ≈

𝜑(𝑓(𝑥𝑖), 𝜓(𝑓(𝑥𝑖))), which leads to the imposition of the error 𝑓′(𝑥𝑖) by 𝑓′′( 𝑖) and lowering the 

order of convergence. 

Obviously, whatever the approximation model is, it will always contain an error of the model itself. 

However, the problem of accuracy of computer calculation of derivatives of a function can be 

successfully solved by using the method of automatic differentiation (AD), the essence of which 

is to create a new data type and redefine operations on them. This approach allows one to determine 

exact (with machine precision) values of a function and its derivatives. For the case under 

consideration, truncated hyper-dual numbers can be used as such a new data type [5]. 

According to [5], a truncated hyper-dual number is defined by the expression 𝑋 = 𝑥 + 𝑥1𝜺 +

 𝑥2, where 𝑥,  𝑥1 and  𝑥2 are real numbers, 𝜺 and   are imaginary symbols. The space of truncated 

hyper-dual numbers corresponds to a three-dimensional algebra with the rule of multiplication of 

basis elements {𝟏, 𝜺,   }: 

 

The number 𝑥 = 𝑅𝑒(𝑋) = 𝑋. 𝑅𝑒 is called the main part of  𝑋, and  𝑥1 =  𝐼𝑚1(𝑋) = 𝑋. 𝐼𝑚1,  𝑥2 =

 𝐼𝑚2(𝑋) = 𝑋. 𝐼𝑚2 - imaginary parts of  𝑋. 

The algebraic operations of addition, multiplication, inversion and division (taking into account 

Table 6) are defined according to the rules: 

 

× 1   

1 1   

  2 0 

  0 0 

Table 1. Rules for multiplying elements of the basis of truncated hyper-dual numbers 

 

(6) 

𝐴 = 𝑎 + 𝑎1𝜺 +  𝑎2, 𝐵 = 𝑏 + 𝑏1𝜺 +  𝑏2 , 

𝐴 + 𝐵 = 𝑎 + 𝑏 + (𝑎1 + 𝑏1)𝜺 +  (𝑎2 + 𝑏2), 

𝐴𝐵 = 𝑎𝑏 + (𝑎𝑏1 + 𝑏𝑎1)𝜺 + (𝑎𝑏2 + 2𝑎1𝑏1 + 𝑏𝑎2), 

𝐴−1 = 𝑎−1 − 𝑎1𝑎
−2𝜺 + ( 2𝑎1

2𝑎−3 −  𝑎2𝑎
−2), 

A
𝐵⁄ = AB−1 = 𝑎𝑏−1 + (𝑎1𝑏

−1 −  𝑎𝑏1𝑏
−2)𝜺 + [2(𝑎𝑏1

2𝑏−3 − 𝑎1𝑏1𝑏
−2) −

                              𝑎𝑏2𝑏
−2 + 𝑎2𝑏

−1]   

(7) 
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The truncated hyper-dual argument function is implemented by the expression: 

 

 

For 𝑥1 = 1 and 𝑥2 = 0, formula (8) takes the form: 

 

 

The description of elementary (basic) functions of a truncated hyper-dual argument is given in [5]. 

For example, ln(𝑋) = ln(𝑥) + 𝑥−1𝜺 − 𝑥−2, whence 𝑅𝑒(𝑋) = 𝑓(𝑥) = ln(𝑥),    𝐼𝑚1(𝑋) =

𝑓′(𝑥) = 𝑥−1 and 𝐼𝑚2(𝑋) = 𝑓′′(𝑥) = −𝑥−2. 

The calculation of a complex truncated hyper-dual function (function composition) of the form 

𝐹 =  𝑓1(𝑓2(… 𝑓𝑘(𝑋) … ), 𝑋), 𝑋) (where the value of 𝑓𝑘  is used as an argument for  𝑓𝑘−1) must be 

started with calculations  𝐹𝑘 =  𝑓𝑘(𝑋), continue with calculations 𝐹𝑘−1 =  𝑓𝑘−1(𝐹𝑘, 𝑋),  𝐹𝑘−2 =

 𝑓𝑘−2(𝐹𝑘−1, 𝑋), … , 𝐹 =  𝑓1(𝐹2, 𝑋). 

To apply AD (based on truncated hyper-dual numbers and truncated hyper-dual functions) to 

relations (2), it is necessary to apply the following mappings 

 

𝑥  →  𝑋 = 𝑥 + 1𝜺 +  0,      𝑓(𝑥) → 𝐹(𝑋) = 𝑓(𝑥) + 𝑓′(𝑥)𝜺 +  𝑓′′(𝑥) 

 

Then for (2) we have 

 

 

where:  𝑋𝑖 = 𝑥𝑖 + 1𝜺 +  0 

Using the SWIFT code describing the Thdn (truncated hyper-dual number) data type [5], a 

computer implementation of the above approach was performed in the SWIFT 5 programming 

language for macOS 13.3. The procedure used in the numerical experiments ChebyshevHalley(.) 

(see Appendix 1) implements the iterative formula (2) taking into account (10). The procedure 

ChebyshevHalleyX(.) is also given, taking into account the area limiting the search for a solution. 

 

To carry out a numerical analysis of the proposed approach, a wide variety of initial functions were 

considered. Some calculation results are shown in Table 2. 

 

𝐹(𝑋) = 𝑓(𝑥) + 𝑥1𝑓
′(𝑥)𝜺 + (𝑥2𝑓

′(𝑥) + 𝑥1
2𝑓′′(𝑥) ) (8) 

𝐹(𝑋) = 𝑓(𝑥) + 𝑓′(𝑥)𝜺 + 𝑓′′(𝑥) (9) 

𝐷(𝑥𝑖) =  𝐹(𝑋𝑖). 𝑅𝑒/ 𝐹(𝑋𝑖). 𝐼𝑚1,    𝐿(𝑥𝑖) = 𝐷(𝑥𝑖)[𝐹(𝑋𝑖). 𝐼𝑚1/𝐹(𝑋𝑖). 𝐼𝑚2], (10) 

𝑓(𝑥) 𝑥0 
n  depending on the value  𝛼 

𝛼 = 0 𝛼 = 1/4 𝛼 = 1/2 𝛼 = 3/4 𝛼 = 1 

𝑥3 + 4𝑥2 − 10 1.0 5 4 4 4 4 

cos(𝑥) − 𝑥 0.0 5 5 5 4 4 

(𝑥 − 1)3 − 1 1.5 5 5 5 5 5 

𝑥3 + 𝑠𝑖𝑛2(𝑥) + 3 cos(𝑥) + 5 -2.0 4 4 4 4 4 
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Table 2. Comparison of the number of iterations n depending on the value of 𝛼. 

 

The obtained numerical results fully correspond to the numerical solutions given in [3], where the 

procedures for approximating 𝑓′′(𝑥) based on the arithmetic, counterharmonic and centroidal 

average values of 𝑓(𝑥) and 𝑓′(𝑥) were used, which leads to overly grammatical formulas related 

to fourth-order two-point methods, for example, 

 

𝑥𝑖+1 = 𝑥𝑖 − 

− 𝐷(𝑥𝑖) [
3𝑓(𝑥𝑖)3 − 12𝑓(𝑥𝑖)𝑓(𝑦𝑖)2(𝛼 − 1) − 16𝑓(𝑦𝑖)3(𝛼 − 1)2(2𝛼 − 1) + 3𝑓(𝑥𝑖)2𝑓(𝑦𝑖)(4𝛼 − 5)

3𝑓(𝑦𝑖)3 − 24𝑓(𝑥𝑖)𝑓(𝑦𝑖)2(𝛼 − 1) − 32𝑓(𝑦𝑖)3(𝛼 − 1)2𝛼 + 6𝑓(𝑥𝑖)2𝑓(𝑦𝑖)(2𝛼 − 3)
], 

 

where: 𝑦𝑖 = 𝑥𝑖 −  𝐷(𝑥𝑖) =  𝑥𝑖 − 𝑓(𝑥𝑖)/𝑓′(𝑥𝑖)  and  𝑓(𝑥), 𝑓′(𝑥)  must be given by analytic 

expressions. 

On the other hand, the variant based on automatic differentiation using special dual numbers 

(truncated hyper-dual numbers) is actually implemented by relations (2), (10) and the new data 

type Thdn. This requires an analytical representation of only the function under study, which can 

be any composition of basic functions and is determined by the program code. 

 

 

Appendix 1. 

 

Code for a numerical experiment in Swift 5 (macOS 13.3). The data type Thdn (truncated-dual 

number) is given in [5], or you can download static library ThdnLibraryX.zip and after unzip add 

ThdnLibraryX into your project (how to do it read ReadMe.txt). Download ThdnLibraryX.zip 

  

// To implement the code below, you need to add a file that describes the data type Thdn (см. [5])  
//or static library ThdnLibraryX  

 

import Foundation; 

 

import ThdnLibraryX;    // add this one if you use static library ThdnLibraryX 
 
let δ:Double = 1E-15;    // allowable error 
 
// INPUT DATA: 
// f – function pointer, xo – start point, 𝛼 –  method constant    

// OUTPUT DATA: 
// (x, i) – solution and number of iterations 
 

𝑒−𝑥 + cos (𝑥) 1.0 4 4 4 4 4 

𝑥2 − 𝑒𝑥 − 3𝑥 + 2 0.0 4 4 4 4 4 

𝑒𝑥2+7𝑥−30 − 1 3.1 5 5 5 4 5 

sin (𝑥) -0.6 6 5 4 4 4 

http://viosolutions.amerihomesrealty.com/pdf/ThdnLibraryX.zip?
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func ChebyshevHalley(f:(Double) -> Thdn, xo:Double, 𝛼:Double)->(x:Double, i:Int){ 

    var xi = xo, x = 0.0, E = Double.greatestFiniteMagnitude; 

    var L, D: Double, i = 0, F = Thdn(); 

    while(E >= δ){ 

        F = f(xi);  D = F.re/F.im1;   L = D*F.im2/F.im1; 

        x = xi - (1.0 + 0.5*L/(1.0 - 𝛼*L))*D; 

        E = abs(x - xi);   xi = x;   i += 1; 

    } 

    return (x, i); 

} 

 
// INPUT DATA: 
// f – function pointer, xo – start point, 𝛼 –  method constant, ab() solution search area boundaries    

// OUTPUT DATA: 
// (x, i) – solution and number of iterations 
 

func ChebyshevHalleyX(f:(Double) -> Thdn,x0:Double, 𝛼:Double, 

                      ab:(a:Double, b:Double))->(x:Double,i:Int){ 

    var xi = x0, x = 0.0, E = Double.greatestFiniteMagnitude; 

    var L, D: Double, i = 0, F = Thdn(); 

    while(E >= δ){ 

        F = f(xi);  D = F.re/F.im1;   L = D*F.im2/F.im1; 

        x = xi - (1.0 + 0.5*L/(1.0 - 𝛼*L))*D; 

        if x > ab.b {x = ab.b}  else if  x < ab.a {x = ab.a} 

        E = abs(x - xi);   xi = x;   i += 1; 

    } 

    return (x, i); 

} 
 
// function calls ChebyshevHalley () and = ChebyshevHalleyX () 

 
 let r  = ChebyshevHalley(f: func7, x0: 2.8, 𝛼: 0.5); 

 let rr = ChebyshevHalleyX(f: func7, x0: 2.8, 𝛼: 0.5,ab: (2.8, 3.5)); 

 
//  functions under study 

 

func func1(x:Double)->Thdn{ 

    let X = Thdn(re: x, im1: 1, im2: 0); 

    return   X**3 + 4.0*X**2 - Thdn(re: 10.0); 

} 

 

func func2(x:Double)->Thdn{ 

    let X = Thdn(re: x, im1: 1, im2: 0); 

    return   Thdn.cos(X: X) – X; 

} 

 

func func3(x:Double)->Thdn{ 

    let X = Thdn(re: x, im1: 1, im2: 0); 

    let Z = X - Thdn(re: 1.0) 

    return   Z**3 - Thdn(re: 1.0); 

} 

 

func func4(x:Double)->Thdn{ 

    let X = Thdn(re: x, im1: 1, im2: 0); 

    return   X**3 + Thdn.sin(X: X)**2 + 3.0*Thdn.cos(X: X) + Thdn(re: 5.0); 

} 
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func func5(x:Double)->Thdn{ 

    let X = Thdn(re: x, im1: 1, im2: 0); 

    return   Thdn.exp(X: -X) + Thdn.cos(X: X); 

} 

 

func func6(x:Double)->Thdn{ 

    let X = Thdn(re: x, im1: 1, im2: 0); 

    return   X**2 - Thdn.exp(X: X) - 3.0*X + Thdn(re: 2.0); 

} 

 

func func7(x:Double)->Thdn{ 

    let X = Thdn(re: x, im1: 1, im2: 0); 

    let Z = X**2 + Thdn(re: 7.0)*X - Thdn(re: 30.0) 

    return   Thdn.exp(X: Z) - Thdn(re: 1.0); 

} 

 

func func8(x:Double)->Thdn{ 

    let X = Thdn(re: x, im1: 1, im2: 0); 

    return   Thdn.sin(X: X); 

} 
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Abstract 
 

This paper considers a method for implementing iterative Chebyshev-Halley formulas based on automatic 

differentiation using special dual numbers (truncated hyper-dual numbers). A computer implementation of this 

approach for the SWIFT language of the macOS operating system is presented. Numerical experiments have been 

carried out. 

   

 

Keywords: iterative methods for solving nonlinear equations, automatic differentiation, truncated hyper-dual 

numbers. 
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